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MODELING MULTIPLE RISKS: HIDDEN DOMAIN OF ATTRACTION

ABHIMANYU MITRA AND SIDNEY I. RESNICK

Abstract. Hidden regular variation is a sub-model of multivariate regular variation and facilitates
accurate estimation of joint tail probabilities. We generalize hidden regular variation to what we
call hidden domain of attraction. We exhibit examples that illustrate the need for a more general
model and discuss detection and estimation techniques.

1. Introduction

Tail probabilities giving simulataneous exceedences of large thresholds by components of a risk
vector provide risk measures for applications such as finance [21], environmental protection [25]
and hydrology [3, 8]. Multivariate extreme value theory (MEVT) is a tool to approximate such
tail probabilities but in common circumstances the asymptotic technique gives an incorrect tail
probability approximation of 0. This paper points out that even when hidden regular variation
(HRV) [11, 15, 16, 18, 20, 22, 23] is not applicable, a more general concept called hidden domain
of attraction may yield a fix.

The joint distribution H(·) of a bivariate random vector X = (X1, X2) belongs to the maximal
domain of attraction of a bivariate distribution G(·) if there exist scaling and centering constants
ain > 0 and bin ∈ R, i = 1, 2, such that for all continuity points x = (x1, x2) of G,

(1.1) lim
n→∞

[
H(a1nx

1 + b1n, a
2
nx

2 + b2n)
]n

= G(x1, x2)

and both the marginal distributions of G(·), G1(·) and G2(·), are non-degenerate extreme value
distributions [9, page 208]. Let M+(E) be the set of Radon measures on E and denote vague

convergence by
v→. The convergence (1.1) is equivalent to vague convergence in M+(E),

(1.2) nP

[(
X1 − b1n
a1n

,
X2 − b2n
a2n

)
∈ ·
]

v→ ν(·) (n→∞),

where depending on the case, E is one of the following domains: [−∞,∞]2 \ {(−∞,−∞)} or
[0,∞]2 \ {(0, 0)} or [−∞,∞] × [0,∞] \ {(−∞, 0)} or [0,∞] × [−∞,∞] \ {(0,−∞)}. The different
domains correspond to the marginal limits being different extreme value distributions. The limit
measure ν(·) in (1.2) is related to the limit distribution G(·) in (1.1) by

(1.3) ν({(z1, z2) ∈ E : z1 ≤ x1, z2 ≤ x2}c) = − log(G(x1, x2)), (x = (x1, x2) ∈ E).

Assuming [X1 > u,X2 > v] is a rare event, that is, that u and v are sufficiently large, we use
MEVT to approximate the joint tail probability P (X1 > u,X2 > v) as

(1.4) P (X1 > u,X2 > v) ≈ 1

n
ν

((
u− b1n
a1n

,∞
]
×
(
v − b2n
a2n

,∞
])

.

However, in the presence of asymptotic independence [9, page 226], (1.4) approximates this prob-
ability as zero. This approximation is often inaccurate and a better approximation is required.

Key words and phrases. Regular variation, maximal domain of attraction, spectral measure, risk sets.
S. Resnick and A. Mitra were partially supported by ARO Contract W911NF-10-1-0289 at Cornell University.
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2 A. MITRA AND S. I. RESNICK

If (1.2) holds with E = [0,∞]2 \ {(0, 0)}, b1n = b2n = 0 and some a1n, a
2
n ↑ ∞, then H possesses

multivariate regular variation (MRV). If X1 and X2 are also asymptotically independent, we may
improve the approximation of joint tail probabilities if hidden regular variation (HRV) is present;
see [19, 20, 22, 23] and the seminal [15, 17]. However, HRV requires the distribution of X1 ∧X2 to
have a regularly varying tail and this may not be the case. Perhaps X1 ∧X2 has a distribution in
some maximal domain of attraction other than the heavy tailed domain. In this case, HRV cannot
be applied to improve joint tail probability approximation but the deficiency can be remedied by a
more general approach which we call hidden domain of attraction (HDA). HRV is a special case of
HDA.

If the distribution of X does not have MRV but (1.2) still holds, we may retrieve the MRV setup
by transforming the components of X to

(
U1(X1), U2(X2)

)
, where U i(·) = 1/(1−H i(·)) and H i(·)

is the distribution of Xi, i = 1, 2 [24, page 265]. If X1 and X2 are asymptotically independent, so
are

(
U1(X1), U2(X2)

)
and assuming U1(X1) ∧ U2(X2) has a regularly varying tail, we may seek

HRV. Statistically this is problematic since we do not know U i(·), i = 1, 2. This can be dealt with
in various ways, none of which is completely satisfying or easy and a potential advantage in some
circumstances of the notion of HDA is that it does not require that we transform components.
Performing such transformations on data either introduces dependencies or unquantifiable errors,
depending on the transformation method used. If U1(X1) ∧ U2(X2) does not have a distribution
with a regularly varying tail, HRV is not applicable but HDA may be if U1(X1) ∧ U2(X2) is in a
maximal domain of attraction of an extreme value distribution other than the Frechét. (See also
Section 3.1.1.)

1.1. Outline. Section 1.2 reviews frequently used notation. In Section 2, we define hidden domain
of attraction for the standard case, when both the components of the risk vector have the same
distribution. This assumption is often unrealistic but could apply either when assessing serial tail
dependence by sampling selectively from a stationary time series or if one chooses to standardize so
that each marginal distribution is, say, Pareto. Section 3 deals with HDA in the non-standard case,
where we drop the identical distribution assumption for X1, X2. Having different marginals comes
at the price that it is difficult to create a coherent estimation technique. We outline one estimation
approach that works best when component random variables have the same upper bounds possibly
∞. In both Sections 2 and 3, we exhibit examples which satisfy our model and discuss estimation
procedures of limit measures that appear in the limit relations of the model. Section 4 discusses the
detection techniques for HDA and estimation of joint and marginal tail probabilities. We conclude
with a few remarks in Section 5.

1.2. Notation. For simplicity, this paper is restricted to two dimensions. For denoting a vector
and its components, we use x = (x1, x2), xi = i-th component of x, i = 1, 2. Multivariate intervals
or rectangles are denoted (x,y], [x,y], etc where, for instance, (x,y] = (x1, y1] × (x2, y2]. The
vectors of all zeros, all ones and all infinities are denoted by 0 = (0, 0), 1 = (1, 1) and ∞ = (∞,∞)

respectively. We write x(1) = x1 ∨ x2, x(2) = x1 ∧ x2. So, the superscripts denote components
of a vector and the ordered component is denoted by a parenthesis in the superscript.

We express vague convergence [23, page 173] of Radon measures as
v→ and weak convergence of

probability measures [2, page 14] as ⇒. Denote a point measure with points {xi} in a nice space
F by

∑
i εxi where εx(·) is the measure with all mass at x:

εx(B) =

{
1, if x ∈ B,
0, if x ∈ Bc,

(x ∈ F, B ⊂ F).
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The set of non-negative Radon measures on a space F topologized by the vague topology is M+(F).
For a one dimensional distribution F (x), set F̄ := 1−F . The inverse of a non-decreasing function

ψ(x) is ψ←(x) := inf{y : ψ(y) ≥ x}. The space of left continuous functions on (0,∞] with finite
right limits is Dleft((0,∞]) and the right continuous functions with finite left limits is D((0,∞]).

2. Standard case hidden domain of attraction

Suppose that a bivariate random vector X = (X1, X2) with distribution H(x) belongs to the

maximal domain of attraction of an extreme value distribution G [24, page 265], X1 d
= X2 and X1

and X2 are asymptotically independent so that (1.1) is satisfied with b1n = b2n = bn, a1n = a2n = an> 0
and G(x, y) = G1(x)G2(y) for x, y ∈ R, n ∈ N. Thus, (1.2) becomes

nP [(X − bn1) /an ∈ · ]
v→ ν(·)(2.1)

in M+(E), where E = [−∞,∞]\{−∞} or E = [0,∞]\{0}. Since G(x, y) = G1(x)G2(y) for
x, y ∈ R, the relation of ν and G given in (1.3) gives for x ∈ E,

ν({z ∈ E : z1 ≤ x1, z2 ≤ x2}c) =− logG1(x1) +− logG2(x2)

=ν({z ∈ E : z1 ≤ x1}c) + ν({z ∈ E : z2 ≤ x2}c).(2.2)

The standard case contains the additional assumption that X1 d
= X2, which reduces (1.2) to (2.1)

and reduces possible choices for E. The cone E = [0,∞]\{0} is chosen only when H has MRV.
From (2.1), the maximal component of X satisfies as n→∞,

(2.3) nP (X(1) > any + bn)→ ν({z ∈ E : z(1) > y}), (y, y) ∈ E,

so X(1) is in a maximal domain of attraction of an extreme value distribution and the distribution
of X(1) characterizes an and bn given in (2.1). Using one-dimensional extreme value theory, we can
and do choose an and bn in such a way that

(2.4) ψ(y) :=
(
ν({z ∈ E : z(1) > y})

)−1
takes one of the following forms:

ψ(y) =

{
y1/γ , if y > 0,

0, otherwise,
if γ > 0,

ψ(y) = ey, if γ = 0,

ψ(y) =

{
∞, if y > 0,

(−y)1/γ , otherwise,
if γ < 0,

where γ is the extreme value index of the distribution of X(1) [24, page 9].
We define a sub-model of MEVT called (standard case) hidden domain of attraction (HDA).

HDA helps approximate joint tail probabilities in the presence of asymptotic independence and
includes HRV as a special case. We assume E is either [−∞,∞]\{−∞} or [0,∞]\{0}, and define
E0 as either (−∞,∞] or (0,∞]. It is not always true that E0 ⊂ E (see Remark 2.2(2)) and we
may have E0 = (−∞,∞] and E = [0,∞]\{0}. See Example 2.7. The choice of E0 depends on the
domain of attraction of the distribution of X1 ∧X2 and the choice of E depends on the domain of
X1 ∨X2.

Definition 2.1. The distribution of X = (X1, X2) has standard case hidden domain of attraction

on the cone E0 if (i) X1 d
= X2; (ii) (2.1) and (2.2) hold; (iii) there exist positive scaling and real
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centering constants {cn} and {dn} and a non-zero measure ν0 ∈M+(E0) such that in M+(E0),

nP [(X − dn1)/cn ∈ · ]
v→ ν0(·) (n→∞).(2.5)

This definition requires X1 d
= X2 and that the distribution of X belongs to the maximal domain

of attraction of an extreme value product measure G with exponent measure ν. Some other remarks:

Remark 2.2. (1) HRV assumes (2.1) holds on E = [0,∞]\{0} with bn = 0, an ↑ ∞ and (2.5)
is satisfied on E0 = (0,∞] with dn = 0, cn ↑ ∞ with an/cn →∞ as n→∞. Hidden regular
variation is a special case of hidden domain of attraction. HRV is the only sub-model of
HDA where the cone E0 in (2.5) is E0 = (0,∞].

(2) From (2.5) the minimum component of X satisfies,

(2.6) nP [X(2) > cny + dn]→ ν0((y,∞]× (y,∞]) ((y, y) ∈ E0),

and therefore, the distribution of X(2) belongs to the maximal domain of attraction of an
extreme value distribution [9, page 4]. When HRV exists, the distribution of X(2) has a
regularly varying tail and is hence in the domain of attraction of the Fréchet distribution.
HDA allows the additional cases where the distribution of X(2) belongs to the domain of
attraction of the Gumbel or the Weibull distribution.

The distribution of X(2) determines the scaling and centering constants {cn} and {dn}
and the cone E0. As illustrated by Example 2.7, even if E = [0,∞]\{0}, the cone E0 could
be (−∞,∞] and E0 is not necessarily a sub-cone of E, as was the case for HRV [22].

(3) From (2.3), X(1) belongs to the maximal domain of attraction of an extreme value distri-

bution. Since X(1) ≥ X(2), γ ≥ γ0 and the convergence (2.1) puts a restriction on what

convergences are possible in (2.5). For example, if (2.1) is satisfied with X(1) being in the

Gumbel domain of attraction, then HRV can never hold on E0 since the tail of X(2) cannot
be heavier than the tail of X(1).

2.1. Semi-parametric structure of ν0. The limit measure ν0 in (2.5) has a semi-parametric
structure which characterizes the limits in (2.5) as a class indexed by a real parameter and a set of
probability measures. This semi-parametric form also assists estimation (as in [19, 20] for HRV).

To understand this semi-parametric structure, let H(2)(·) be the distribution of X(2) and define

(2.7) ψ0(y) :=
[
ν0((y,∞]× (y,∞])

]−1
where ν0(·) is given in (2.5). Rewrite (2.6) as

nH(2)(cny + dn)→ [ψ0(y)]
−1

(y ∈ R),(2.8)

and univariate extreme value theory implies H(2) is in a maximal domain of attraction with some
extreme value index γ0. Choose cn and dn suitably [24, page 9] and ψ0(·) takes one of the forms:

ψ0(y) =

{
y1/γ

0
, if y > 0,

0, otherwise,
if γ0 > 0,

ψ0(y) = ey, if γ0 = 0,

ψ0(y) =

{
∞, if y > 0,

(−y)1/γ
0
, otherwise,

if γ0 < 0.

(2.9)

Henceforth assume that cn and dn are chosen so that (2.9) is true. Define

(2.10) U (2)(x) = 1/(1−H(2)(x)),
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so that (2.8) becomes

(2.11) U (2)(cny + dn)/n→ ψ0(y), y ∈ R.

The following identifies the semi-parametric structure of ν0.

Proposition 2.3. If X1 d
= X2, the distribution of X satisfies (2.5) iff

(1) X(2) has a distribution H(2) in a univariate maximal domain of attraction so that for some
cn > 0, dn ∈ R, (2.8) or (2.11) holds, and

(2) regular variation on (0,∞] holds for the distribution of (U (2)(X1), U (2)(X2)):

(2.12) nP
[
n−1

(
U (2)(X1), U (2)(X2)

)
∈ ·
]

v→ ν̃0(·)

where U (2)(·) is defined in (2.10) and ν̃0(·) is a Radon measure on (0,∞] that is related to
the limit measure ν0(·) in (2.5) by

(2.13) ν̃0((x1,∞]× (x2,∞]) = ν0
((

(ψ0)
←

(x1),∞
]
×
(
(ψ0)

←
(x2),∞

])
, (x ∈ (0,∞]).

The measure ν̃0(·) satisfies the scaling property on (0,∞]:

ν̃0(c·) = c−1ν̃0(·), c > 0.(2.14)

Remark 2.4. (i) Proposition 2.5 below shows that the limit measure ν̃0 is determined by a

probability measure S0 on a certain space δℵ(2) to be explained and the family of limits in
(2.12) is indexed by probability measures on δℵ(2). Given the measure S0 and the parameter γ0

we get ν0 which shows the semi-parametric structure. The probability measure S0 determines
ν̃0 and γ0 gives ψ0(·) from (2.9) and then ν0.

(ii) If the support of the distribution of X(2) is smaller than that of Xi, i = 1, 2, then U (2)(Xi)
could take the value ∞ with positive probability.

Proof of Proposition 2.3. Assume (2.8) or (2.11) as well as (2.12). For x ∈ E0 such that ψ0(xi) <

∞, i = 1, 2, we have cnx
i + dn converging from below to the right end point of H(2) and

nP

[
X1 − dn

cn
> x1,

X2 − dn
cn

> x2
]

= nP

[
U (2)(X1)

n
>
U (2)(cnx

1 + dn)

n
,
U (2)(X2)

n
>
U (2)(cnx

2 + dn)

n

]
→ ν̃0

((
ψ0(x1),∞

]
×
(
ψ0(x2),∞

])
= ν0((x1,∞]× (x2,∞]),

where the convergence follows from (2.8) and (2.12) and the last equality follows from (2.13) and
the forms of ψ0(·) given in (2.9). Hence, (2.5) holds. The converse is similar and is omitted. �

The scaling property (2.14) allows us to express (2.12) in an alternate coordinate system that

transforms the limit measure into a product. From (2.12), (U (2)(X1), U (2)(X2)) has regular varia-
tion on (0,∞] and using (2.7), (2.9) and (2.13), we get

ν̃0 ((1,∞]) = ν0
(((

ψ0
)←

(1),∞
]2)

= [ψ0(
(
ψ0
)←

(1))]
−1

= 1.

The scaling property (2.14) extends this to ν̃0([1,∞]) = 1 and Proposition 3.1 of [20] and Propo-
sition 2.3 yield the equivalent convergence in alternate coordinates given in (2.15) below.
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To specify the coordinates, we need the following: Let ν1 be a Pareto measure on (0,∞] satisfying

ν1((y,∞]) = y−1 for y > 0. Since U (2)(·) is non-decreasing, U (2)(X(2)) = U (2)(X1)∧U (2)(X2). Set

δℵ(2) = {x ∈ (0,∞]2 : x(2) = 1}.

Proposition 2.5. The convergence in (2.12) is equivalent to

(2.15) nP

[(
U (2)

(
X(2)

)
n

,

(
U (2)(X1)

U (2)(X(2))
,
U (2)(X2)

U (2)(X(2))

))
∈ ·

]
v→ ν1 × S0(·),

on (0,∞] × δℵ(2), where S0 is a probability measure on δℵ(2). The relation between ν̃0 in (2.12)
and S0 is

(2.16) ν̃0
({

x ∈ (0,∞]2 : x(2) ≥ r,x/x(2) ∈ Λ
})

= r−1S0(Λ),

for r > 0 and Borel sets Λ ⊂ δℵ(2).

The probability measure S0, called the standardized hidden spectral measure, is

P

[(
U (2)(X1), U (2)(X2)

)
U (2)(X(2))

∈ ·
∣∣∣X(2) > t

]
⇒ S0(·),(2.17)

where the convergence holds as t → xH(2) = sup{y ∈ R : H(2)(y) < 1}. For HRV, a similar
spectral measure was defined in [20]. In classical extreme value theory, a change to Pareto scale in
the coordinates and then a change to polar coordinates produces a product measure and spectral
measure ([9, page 214], [24, Chapter 5], [23, Chapter 6]).

2.2. Examples. We give examples of distributions that possess multivariate regular variation with
asymptotic independence. Each has hidden domain of attraction but not hidden regular variation.
emphasizing the need for a concept beyond HRV.

Example 2.6. Suppose, W1,W2
iid∼ F (·) and Z1, Z2

iid∼ D(·), where F and D belong to the maximal
domains of attraction of the Fréchet with index α = 1 and Gumbel distributions respectively. Let
B be a Bernoulli random variable such that P [B = 1] = 0.5 = 1− P [B = 0]. Assume the random
variables W1,W2, Z1, Z2 and B are mutually independent and define a bivariate random vector X
as

X = (X1, X2) = B(W1, Z1) + (1−B)(Z2,W2).

We show that the distribution of X has MRV. It suffices [7] to verify that t1X
1 ∨ t2X2 has a

regularly varying tail for any t1, t2 > 0. Since F has a regulary varying tail and

P [t1W1 ∨ t2Z1 > x]∼P [t1W1 > x], (x→∞),

t1X
1 ∨ t2X2 also has a regularly varying tail. Thus for appropriate an ↑ ∞,

nP [X/an ∈ · ]
v→ ν(·)

on E = [0,∞]2 \ {0}, where ν
((

[0, x1]× [0, x2]
)c)

= 1
2

((
x1
)−1

+
(
x2
)−1)

. Therefore, the distribu-

tion of X has MRV with asymptotic independence on E.
Furthermore, X(2) belongs to the maximal domain of attraction of a Gumbel distribution and

therefore, HRV does not exist. To see this, without loss of generality [1, 24], assume that D is a
von-Mises function [24, page 40] and for specificity assume the right endpoint of D is infinite. The
form of the tail is

D(x) = ce−
∫ x
1 [fD(y)]−1dy and f ′D(x)

x→∞→ 0,
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where c > 0 is some constant. Likewise, assume without loss of generality [24, page 58] that

F satisfies xF ′(x)/F̄ (x) → 1, where 1 is the index of regular variation of F̄ . Then H(2)(x) :=
F (x)D(x) is the tail of a von-Mises function with auxiliary function

fH(2)(t) = tfD(t)/(t+ 1 · fD(t))
t→∞∼ fD(t),

since

1

fH(2)(t)
=
H(2)′(t)

H(2)(t)
=
F ′(t)

F (t)
+
D′(t)

D(t)

t→∞∼ t−1 +
1

fD(t)
.

From [24, Corollary 1.7, page 46] H(2) belongs to the maximal domain of attraction of the Gumbel
distribution.

Next we make the conventional choices [24, page 40] of scaling and centering constants {cn} and

{dn} in (2.8) so that in (2.9) ψ0(·) = ey. These choices are dn =
(
1/H(2)

)←
(n) and cn = fH(2)(dn).

Then for x ∈ E0 = (−∞,∞]2, as n→∞,

nP [X1 >dn + cnx
1, X2 > dn + cnx

2]

=
n

2
F
(
dn + cnx

1
)
D
(
dn + cnx

2
)

+
n

2
F
(
dn + cnx

2
)
D
(
dn + cnx

1
)

=
n

2

(
F
(
dn + cnx

1
)

F (dn + cnx2)

)
H(2)

(
dn + cnx

2
)

+
n

2

(
F
(
dn + cnx

2
)

F (dn + cnx1)

)
H(2)

(
dn + cnx

1
)

→ 1

2
(e−x

1
+ e−x

2
).

The convergence follows from the facts that F is regularly varying, cn/dn → 0 and (2.8) holds with
ψ0(y) = ey. Therefore, as in Definition 2.1, the distribution of X has HDA on E0 = (−∞,∞]2

with limit measure ν0 such that for x = (x1, x2) ∈ E0,

ν0
(
(x1,∞]× (x2,∞]

)
=

1

2
(e−x

1
+ e−x

2
).

To summarize, the distribution of X is regularly varying on E, has HDA on E0, but does not
have HRV since HRV requires the distribution of X(2) to be in the domain of attraction of the
Fréchet distribution [24, page 54].

Example 2.7. Suppose, U ∼ Uniform([0, 1]). Define the random vector X as

X = (X1, X2) =

(
1

U
,

1

1− U

)
.

Now, note that for x1, x2 > 0, 2n > (x1)
−1

+ (x2)
−1
,

n(1− P [1/U ≤ 2nx1, 1/(1− U) ≤ 2nx2]) = n(1− P [U ≥ (2nx1)
−1
, U ≤ 1− (2nx2)

−1
])

= n(1− (1− (2nx2)
−1 − (2nx1)

−1
))→ 1

2
((x1)

−1
+ (x2)

−1
),

as n → ∞. Therefore, on E = [0,∞]2 \ {0}, nP [X/2n ∈ ·] v→ ν(·) where the limit measure ν

satisfies ν
((

[0, x1]× [0, x2]
)c)

= ((x1)
−1

+ (x2)
−1

)/2, for x ∈ E and thus the distribution of X has
MRV with asymptotic independence.
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Since X1∧X2 is bounded above, it is immediately clear HRV is absent. However, this distribution
does have HDA. For {(x1, x2) ∈ (−∞,∞]2 : x1 + x2 ≤ 0}, and large n,

nP
[
X1 > 2 +

2x1

n+ 1
, X2 > 2 +

2x2

n+ 1

]
= nP

[
U <

n+ 1

2n+ 2 + 2x1
, U >

n+ 1 + 2x2

2n+ 2 + 2x2

]
= n

(
n+ 1

2n+ 2 + 2x1
− n+ 1 + 2x2

2n+ 2 + 2x2

)
= n

(
1

2
− x1

2n+ 2 + 2x1
− 1

2
− x2

2n+ 2 + 2x2

)
→ 1

2
((−x1) + (−x2)),(2.18)

as n→∞. Similar calculations show that for {(x1, x2) ∈ (−∞,∞]2 : x1 + x2 > 0},

nP

[
X1 > 2 +

2x1

n+ 1
, X2 > 2 +

2x2

n+ 1

]
→ 0,(2.19)

as n→∞. Therefore, the distribution of X has HDA as in Definition 2.1 on E0 = (−∞,∞]2 with
limit measure ν0 such that for x ∈ E0,

ν0
(
(x1,∞]× (x2,∞]

)
=

{
1
2((−x1) + (−x2)), if x1 + x2 ≤ 0
0 otherwise.

From (2.18) and (2.19) it also follows that X(2) belongs to the domain of attraction of the reversed
Weibull distribution [24, page 59].

To summarize: The distribution of X has MRV with asymptotic independence, does not have
HRV but does have HDA and furthermore, E0 is not a subset of E.

2.3. Estimation. Recall the standard case assumes marginal distributions are the same. To esti-
mate joint tail probabilities, we first estimate the limit measure ν0 given in (2.5). Let, {X,Xi, i =
1, 2, · · · , n} be iid with a common distribution satisfying (2.5). From (2.5),

1

k

n∑
i=1

ε(Xi−d(n/k)1

c(n/k)

)(·)⇒ ν0(·) (k →∞, n/k →∞),(2.20)

in M+(E0) [23, page 139]. From (2.6), the distribution of X(2) determines cn and dn. The iid data

{X(2)
i : i = 1, 2, · · · , n} allow estimates ([9], [23, page 93]) of c(n/k) and d(n/k), denoted by ĉ(n/k)

and d̂(n/k), satisfying

c(n/k)

ĉ(n/k)

P→ 1,
d(n/k)− d̂(n/k)

c(n/k)

P→ 0;(2.21)

Therefore, we get the joint convergence(
1

k

n∑
i=1

ε(Xi−d(n/k)1

c(n/k)

), d(n/k)− d̂(n/k)

c(n/k)
,
c(n/k)

ĉ(n/k)

)
⇒
(
ν0(·), 0, 1

)
(2.22)

in M+(E0)×R2. Apply the almost surely continuous map (ν(·), b, a) 7→ ν(a[(·) + b1]) in (2.22) and
we get the following proposition:

Proposition 2.8. Let, {X,Xi, i ≥ 1} be iid with common distribution satisfying (2.5). Then,

ν̂0n(·) :=
1

k

n∑
i=1

ε(
Xi−d̂(n/k)1

ĉ(n/k)

)(·)⇒ ν0(·) (k →∞, n/k →∞),(2.23)

in M+(E0).
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Estimation of ν0(·) in Proposition 2.8 does not exploit the semi-parametric structure discussed

in Section 2.1 and has the disadvantages that (a) there is no guarantee the estimator ν̂0n(·) is even
a member of the class of possible limit measures; and (b) we are required to estimate c(·) and d(·).
These problems are overcome using the semi-parametric structure as was done for HRV [11, 19, 20].

We must estimate the extreme value index γ0 of the distribution of X(2) as well as the standardized

hidden spectral measure S0. Since {X(2)
i : i = 1, 2, · · · , n} is iid data, estimating γ0 of X(2) is a

standard procedure [9, page 65] so we concentrate on estimating S0(·). A modification of a ranks
method [9, 11, 14, 23] to obtain an estimator of ν̃0(·) avoids the need to estimate c(·) and d(·). For
i = 1, 2, · · · , n, define

R
1,(2)
i =

∣∣{j : X
(2)
j ≥ X1

i

}∣∣ and R
2,(2)
i =

∣∣{j : X
(2)
j ≥ X2

i

}∣∣,(2.24)

where | · | denotes size of a set. Note that 0 ≤ R
j,(2)
i ≤ n for i = 1, 2, · · · , n, j = 1, 2 and also that

since R
1,(2)
i ∨ R2,(2)

i = |{j : X
(2)
j ≥ X

(2)
i }|, 1 ≤ R

1,(2)
i ∨ R2,(2)

i ≤ n for i = 1, 2, · · · , n. Proposition

2.9 gives an estimator of ν̃0 which we modify to get an estimator of S0(·).

Proposition 2.9. We have in M+((0,∞]2),

̂̃ν0n(·) :=
1

k

n∑
i=1

ε(
k/R

1,(2)
i , k/R

2,(2)
i

)(·)⇒ ν̃0(·) (k →∞, n/k →∞),(2.25)

where (2.12) defines ν̃0(·) and (2.24) defines R
1,(2)
i and R

2,(2)
i .

Proof. From (2.5) and the definition of ψ0(·) given in (2.7), we have in D((0,∞]),

1

k

n∑
i=1

ε(
(X

(2)
i −d(n/k))/c(n/k)

)((x,∞])⇒ [ψ0(x)]
−1
.

Hence [23, page 58], inverse functions also converge in distribution in Dleft((0,∞]), the space of left
continuous functions with finite right limits,

inf{x :
1

k

n∑
i=1

ε(
(X

(2)
i −d(n/k))/c(n/k)

)((x,∞]) ≤ 1/s} ⇒ inf{x : [ψ0(x)]
−1 ≤ 1/s} =

(
ψ0
)←

(s).(2.26)

Write the order statistics of {X(2)
1 , . . . , X

(2)
n } as X

(2)
(1) ≥ · · · ≥ X

(2)
(n) and observe the left side of

(2.26) is

inf{x :
n∑
i=1

ε(
(X

(2)
i −d(n/k))/c(n/k)

)((x,∞]) ≤ k/s} =

X(2)
(dk/se) − d(n/k)

c(n/k)

 .(2.27)

From (2.20), (2.26) and (2.27) we get that as k →∞ and n/k →∞,

(1

k

n∑
i=1

ε(Xi−d(n/k)1

c(n/k)

)(·),
X

(2)
(dk/se))− d(n/k)

c(n/k)
,
X

(2)
(dk/te))− d(n/k)

c(n/k)

)
⇒
(
ν0(·),

((
ψ0
)←

(s),
(
ψ0
)←

(t)
))

(2.28)
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in M+(E0) ×Dleft((0,∞]) ×Dleft((0,∞]). Using the scaling technique as in [23, page 311] we get
from (2.28) that as k →∞ and n/k →∞,

1

k

n∑
i=1

1{
X1

i >X
(2)
(dk/se),X

2
i >X

(2)
(dk/te)

} ⇒ ν0
(((

ψ0
)←

(s),∞
]
×
((
ψ0
)←

(t),∞
])

= ν̃0 ((s,∞]× (t,∞]) ,

(2.29)

in Dleft(0,∞])×Dleft((0,∞]). Since the left side of (2.29) is

1

k

n∑
i=1

1{
R

1,(2)
i <k/s, R

2,(2)
i <k/t

} =
1

k

n∑
i=1

1{
s<k/R

1,(2)
i , t<k/R

2,(2)
i

},
we have proven (2.25). �

Proposition 2.9 yields an estimator of the limit measure ν1×S0(·) and then an estimator of S0(·).

Proposition 2.10. The convergence in (2.25) is equivalent to

̂ν1 × S0
n(·) :=

1

k

n∑
i=1

ε(
k

R
1,(2)
i

∨R2,(2)
i

,

(
R
1,(2)
i

∨R2,(2)
i

R
1,(2)
i

,
R
1,(2)
i

∨R2,(2)
i

R
2,(2)
i

))(·)⇒ ν1 × S0(·)(2.30)

in M+((0,∞]× δℵ(2)), where ν1 × S0(·) is given in Proposition 2.5.

Proof. The proof uses Proposition 2.5 and follows exactly similar steps as that of Proposition 3.7
of [19]. It is based on the map x 7→ (x(2),x/x(2)). �

From the convergence in (2.30), we construct a consistent estimator of S0(·):

Ŝ0
n(·) :=

∑n
i=1 ε

(
k

R
1,(2)
i

∨R2,(2)
i

,

(
R
1,(2)
i

∨R2,(2)
i

R
1,(2)
i

,
R
1,(2)
i

∨R2,(2)
i

R
2,(2)
i

)) ([1,∞]× ·)

∑n
i=1 ε k

R
1,(2)
i

∨R2,(2)
i

([1,∞])
⇒ S0(·)(2.31)

in M+(δℵ(2)). Hence, we have obtained a consistent estimator for both the extreme value index γ0

and the standardized hidden spectral measure S0.

It is possible that R
j,(2)
i = 0 for some j = 1, 2 and some i = 1, 2, · · · , n and thus division by zero

may be indicated in (2.31). Though theoretically justified, this is not desirable when writing code

for an estimator. The continuous bijection T : δℵ(2) 7→ [0, 1] given by T : x 7→ x2/(x1+x2) provides
an instant remedy. We use the convention that∞/∞ = 1 and 1/∞ = 0. Using this transformation,
(2.31) becomes ∑n

i=1 ε
(

k

R
1,(2)
i

∨R2,(2)
i

,

(
R
1,(2)
i

R
1,(2)
i

+R
2,(2)
i

)) ([1,∞]× ·)

∑n
i=1 ε k

R
1,(2)
i

∨R2,(2)
i

([1,∞])
⇒ S0 ◦ T−1(·)(2.32)

in M+([0, 1]). Since T is a continuous bijection, we retrieve S0 from S0 ◦ T−1.

3. Non-standard hidden domain of attraction

To provide more scope for applications, the non-standard case no longer assumes that X1 d
= X2.

However, we have found that to construct a coherent estimation theory requires careful considera-
tion of the definitions. As in the standard case, the goal is to approximate marginal and joint tail
probabilities.
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3.1. How to proceed? In order for (1.2) to hold when X has different marginal distributions, one
typically needs different centering and scaling constants for the two components of X. Traditional
theory [24, page 277, Proposition 5.15] proceeds by standardizing each component. However,
a theory of hidden domain of attraction that follows this approach encounters problems in the
estimation procedure that we could not resolve without strong second order conditions. Here is
more detail on the traditional approach.

3.1.1. Trying the traditional approach. Suppose we try to proceed by the usual standardization
procedure. As in the introduction, set U i(x) = 1/P [Xi > x] and define X̃i = U i(Xi), i = 1, 2. The
MEVT condition (1.2) is equivalent to standard regular variation on E = [0,∞] \ {0}; that is of

vague convergence of nP [(X̃/n ∈ · ] where X̃ = (X̃1, X̃2) and the vague limit of nP [(X̃/n ∈ · ]
is a transformed version of the measure ν in (1.2); the transformation depends on the marginal
domains of attraction in (1.2). See [10], [24, Chapter 5], [9]. This reduction to Pareto scale brings
us to the setup of Section 2 and to define HDA we would add the analogue of equation (2.5) with

X̃ replacing X. So far so good and this was the route followed for HRV in [11].
For estimation, the change to Pareto scale creates difficulties. Either one estimates U i which

introduces errors that are difficult to quantify, or one resorts to the non-parametric rank transform
[9, 11, 14, 23] which requires a large data set and destroys independence. For estimation, the ranks

method replaces the observed sample {X̃i, i = 1, . . . , n} with {(1/r1i , 1/r2i ), i = 1, . . . , n} where
r1i = |{j : X1

j > X1
i }| with a similar definition for r2i . This replacement creates the difficulty that

it is not obvious the information about convergence in (2.5) on E0 is preserved. We have not found
a bridge such as Proposition 1, page 401 in [11] and our efforts in this direction indicate a need
for second order regular variation for consistency of estimates, an undesirable feature. So we try a
different path that will be helpful for some cases.

3.1.2. An untraditional approach. We deviate from the traditional MEVT treatment by requiring
that both components in (2.1) have the same centering and scaling but permitting the limit measure
to have one zero marginal. By a zero marginal, we mean that either the limit measure ν(·) in (2.1)
has the property

(3.1) ν
({

z ∈ E : z2 > y
})

= 0 ((y, y) ∈ E)

or the same holds with z1 in place of z2. This could happen if the tail of X2 is lighter than that
of X1 or vice versa. If E = [0,∞] \ {0}, (3.1) means ν must concentrate either on one of the two
axes emanating from 0. The approach that we outline is not the only way to proceed but it does
overcome some difficulties for estimation.

In the non-standard case, if we assume (2.1), the limit measure ν may satisfy:

(i) ν has a zero second marginal: for (y, y) ∈ E, ν
({

z ∈ E : z2 > y
})

= 0;

(ii) ν has a zero first marginal: for (y, y) ∈ E, ν
({

z ∈ E : z1 > y
})

= 0,

(iii) the cases (i) and (ii) do not hold, but ν
({

z ∈ E : z1 > x, z2 > y
})

= 0 for (x, y) ∈ E,

(iv) for (x, y) ∈ E, ν
({

z ∈ E : z1 > x, z2 > y
})

> 0.

Case (iv) means (2.1) yields non-zero estimates of the marginal and joint tail probabilities, so
in this case we have no need to define HDA. The definition and analysis of HDA in case (iii) is
the same as the standard case discussed in Section 2 since the two components are normalized the
same. The definition and analysis of HDA are very similar for cases (i) and (ii) so focus only on
case (i).

Our definition of HDA borrows a basic idea of the conditional extreme value (CEV) model
[4–6, 12, 13]. A relevant state space is Eu where either Eu = [−∞,∞] × (−∞,∞] or Eu =
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[0,∞]× (0,∞]. We will see in Example 3.7 that for case (i) it is possible to find HDA on both the
cones Eu and E0 in sequence. Thus, compared to the standard case, our estimation procedure here
might involve analyzing HDA on the additional cone Eu.

Definition 3.1. The distribution of X = (X1, X2) has hidden domain of attraction on the cone
Eu if (2.1) holds with the limit measure ν, the second marginal of ν is a zero measure and in
addition, there exist constants en > 0 and fn ∈ R and a non-zero measure νu ∈M+(Eu) such that
as n→∞,

nP

[(
X− fn1

en

)
∈ ·
]

v→ νu(·) in M+(Eu).(3.2)

Note (3.2) does not preclude a similar convergence with different norming constants from holding
on a smaller cone, say E0. See Definition 3.3. From (3.2) it follows that for (y, y) ∈ Eu, as n→∞,

(3.3) nP [X2 > eny + fn]→ νu
(
{(u, v) ∈ Eu : v > y}

)
.

Therefore, the distribution of X2, the second component of X, belongs to the maximal domain
of attraction of an extreme value distribution [9, page 4]. Using one-dimensional extreme value

theory, ψu(y) := [νu ([0,∞]× (y,∞])]−1 must take one of the following forms [24, page 9]:

ψu(y) =

{
y1/γ

u
, if y > 0,

0, otherwise,
if γu > 0,

ψu(y) = ey, y ∈ R, if γu = 0,

ψu(y) =

{
∞, if y > 0,

(−y)1/γ
u
, otherwise,

if γu < 0.

(3.4)

The parameter γu in (3.4) is the extreme value index of X2. We can and always do choose {en}
and {fn} in such a way that ψu takes one of the above forms.

Remark 3.2. Some comments about Definition 3.1.

(1) Definition 3.1 often permits non-zero approximation of joint tail probabilities when asymp-
totic independence holds in (1.2) with each component normalized differently.

(2) Since (2.1) holds, so does (2.3) and therefore the maximum component X(1) belongs to the

maximal domain of attraction of some extreme value distribution. Since X(1) ≥ X2, the
convergence relation (2.1) constrains the possible convergences in (3.2). For example, if

(2.3) has X(1) in the Gumbel domain of attraction, then the distribution of X2 cannot have
a regularly varying tail.

(3) The distribution of X2 determines the cone Eu and (3.3) yields the scaling and centering
constants {en} and {fn}. If the distribution of X2 is in the Fréchet domain of attraction,
Eu = [0,∞]× (0,∞] and otherwise we take Eu = [−∞,∞]× (−∞,∞].

There are two possibilities for the limit measure νu in (3.2):

(i) the limit measure νu puts zero mass on all sets (x,∞]× (y,∞] for (x, y) ∈ Eu; or
(ii) the limit measure νu puts non-zero mass on one of the sets (x,∞]× (y,∞] for (x, y) ∈ Eu.

The semi-parametric structure of νu discussed in the next section implies that for case (ii),
νu((x,∞] × (y,∞]) > 0 for all (x, y) ∈ Eu. So, in case (ii), we get non-zero estimates of joint
tail probabilities and since we accomplished our goal there is no reason to seek further instances
of HDA. Case (i) offers the difficulty that νu(·) fails to provide non-zero estimates of joint tail
probabilities. However, HDA could still exist on a smaller cone such as E0 and if this is true we
have a potential resolution of the difficulty. We formalize this idea in Definition 3.3, where the
state space E0 is either (−∞,∞]2 or (0,∞]2.
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Definition 3.3. The distribution of X = (X1, X2) has hidden domain of attraction on the cones
Eu and E0 if Definition 3.1 holds, the limit measure νu in (3.2) puts zero mass on sets of the form
(x,∞] × (y,∞] for (x, y) ∈ Eu, and in addition, there exist centering and scaling constants {cn}
and {dn} and a non-zero measure ν0 ∈M+(E0) such that as n→∞,

nP
[
c−1n (X − dn1) ∈ ·

] v→ ν0(·) in M+(E0).(3.5)

As noted before in (2.6), the scaling and centering constants {cn} and {dn} in (3.5) are char-

acterized by the distribution of X(2), the minimum component of X. Recall the definition of ψ0

given in (2.7). As was done in the standard case discussion, we choose the scaling and centering
constants {cn} and {dn} in (3.5) so that ψ0 takes one of the forms given in (2.9). Also, whether E0

in (3.5) is (−∞,∞]2 or (0,∞]2 is determined by the distribution of X(2).

3.2. Semi-parametric structure of νu. Both limit measures νu of (3.2) and ν0 of (3.5) have
semi-parametric structures. Since the semi-parametric structure of ν0 was discussed in Section 2.1,
we concentrate only on the semi-parametric structure of νu and proceed as follows.

Recall that the distributions of X and X2 are H and H2. Define

(3.6) U2(x) = 1/(1−H2(x)).

The following proposition relates (3.2) to a regular variation condition on [0,∞]× (0,∞]. Its proof
is similar to that of Proposition 2.3 and is omitted.

Proposition 3.4. The distribution of X satisfies (3.2) iff

(1) X2 has a distribution in a maximal domain of attraction so that for some en > 0, fn ∈ R
(3.3) holds, and

(2) regular variation on the cone [0,∞]× (0,∞] holds for the distribution of (U2(X1), U2(X2)):

(3.7) nP

[(
U2(X1)

n
,
U2(X2)

n

)
∈ ·
]

v→ ν̃u(·) (in M+([0,∞]× (0,∞]),

where (3.6) defines U2(·) and ν̃u(·) is a Radon measure on [0,∞]× (0,∞].

The limit measure ν̃u(·) is related to the limit measure in νu(·) in (3.2) by the following relation:
for (x1, x2) ∈ [0,∞]× (0,∞],

ν̃u
(
(x1,∞]× (x2,∞]

)
= νu

((
(ψu)

←
(x1),∞

]
×
(
(ψu)

←
(x2),∞

])
,

ν̃u
(
[0, x1]× (x2,∞]

)
= νu

({
z ∈ Eu : z1 ≤

(
ψu
)←

(x1), z2 >
(
ψu
)←

(x2)
})
.(3.8)

The measure ν̃u(·) satisfies the scaling property:

ν̃u(c·) = c−1ν̃u(·) c > 0.(3.9)

Remark 3.5. (i) On the semi-parametric structure of νu: We will see that a probability measure
Su on [0,∞] determines the limit measure ν̃u. The parameter γu and the probability measure
Su on [0,∞] determine νu, since given γu and measure Su, we get the function ψu(·) in (3.4)
and ν̃u which through (3.8) determines νu.

(ii) If the support of the distribution of X2 is smaller than that of X1, then U2(X1) could take
the value ∞, so in this case we consider U2(X1) as an extended random variable.

The method that shows ν̃0([1,∞]2) = 1 also shows ν̃u([0,∞]× [1,∞]) = 1. Proposition 4 of [12]
and Proposition 3.4 give a convergence relation in new coordinates.
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Proposition 3.6. The convergence in (3.2) is equivalent to

(3.10) nP

[(
U2
(
X2
)

n
,
U2(X1)

U2(X2)

)
∈ ·

]
v→ ν1 × Su(·) (in M+((0,∞]× [0,∞])),

where ν1 is a Pareto measure on (0,∞] satisfying ν1((x,∞]) = x−1 for x > 0, and Su is a probability
measure on [0,∞], called the standardized hidden spectral measure. The relation between ν̃u given
in (2.12) and Su is

(3.11) ν̃u
({

x ∈ [0,∞]× (0,∞] : x2 ≥ r, x1/x2 ∈ Λ
})

= r−1Su(Λ),

which holds for all r > 0 and all Borel sets Λ ⊂ [0,∞].

3.3. Examples. We give examples of distributions of X = (X1, X2), X1
d
6= X2, and which have

HDA. In Example 3.7, the limit measure νu of (3.2) puts zero mass on all sets of the form (x1,∞]×
(x2,∞] for x ∈ Eu and HDA also holds on E0. In Example 3.8, νu of (3.2) puts non-zero mass on
sets of the form (x1,∞]× (x2,∞] for x ∈ Eu.

Example 3.7. Suppose X1 ∼ exp(1), X2 ∼ exp(2) and (X1, X2) are independent. Hence (X1, X2)
are also asymptotically independent and to estimate joint tail probabilities, we proceed as follows.
For x ∈ R2,

n
(
1− P

[
X1− log n ≤ x1, X2 − log n ≤ x2

])
= n

[
1−

(
1− e−(logn+x1)

)(
1− e−2(logn+x2)

)]
∼n
(
e−(logn+x

1) + e−2(logn+x
2)
)
→ e−x

1
as n→∞,

which implies (2.1) holds on E = [−∞,∞]2 \ {(−∞,−∞)} with ν
((

[−∞, x1]× [−∞, x2]
)c)

= e−x
1

and ν puts mass only on (−∞,∞]×{−∞}, the horizontal line through −∞, and ν has zero second
marginal. So we seek HDA on Eu. For 1

2 log n+ xi > 0, i = 1, 2 we have

nP

[
X1 − log n

2
≤ x1, X2 − log n

2
> x2

]
= n

(
1− e−(

logn
2

+x1)
)
e−2(

logn
2

+x2) → e−2x
2
,

as n→∞, and

nP

[
X1 − log n

2
> x1, X2 − log n

2
> x2

]
= ne−(

logn
2

+x1)e−2(
logn
2

+x2) → 0.

Thus, HDA exists on Eu = [−∞,∞] × (−∞,∞] with limit measure νu, where νu([−∞, x1] ×
(x2,∞]) = e−2x

2
and νu((x1,∞]×(x2,∞]) = 0 for x ∈ Eu. So νu concentrates on {−∞}×(−∞,∞],

the vertical line through −∞. After peeling away both lines through −∞, we look for HDA on
E0. A hint for how to proceed is provided by X1 ∧X2 ∼ exp(3). Note that as n→∞,

nP

[
X1 − log n

3
> x1, X2 − log n

3
> x2

]
= ne−(

logn
3

+x1)e−2(
logn
3

+x2) → e−(x
1+2x2).

Thus HDA exists on E0 = (−∞,∞]2 with limit measure ν0, where ν0((x1,∞]×(x2,∞]) = e−(x
1+2x2)

for x ∈ E0.
To summarize Example 3.7, Definition 3.3 holds and HDA holds on both the cones Eu and E0,

but the HDA on Eu is not informative for calculating risk probabilities where both components of
the risk vector are large.
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Example 3.8. Suppose E1, E2, E3 are iid exp(1) random variables independent ofB ∼ Bernoulli(1/2)
and define X as

X = B(E1, E3/3) + (1−B)(E2/2, E2/2).

Then X possesses asymptotic independence and to estimate joint tail probabilities, proceed as
follows. As n→∞, for x1 ∧ x2 + log n > 0,

n
(
1− P

[
X1 − log n ≤ x1, X2 − log n ≤ x2

])
= n

[
1−

[
1

2

(
1− e−(logn+x1)

)(
1− e−3(logn+x2)

)
+

1

2

(
1− e−2(logn+x1∧x2)

)]]
→ 1

2
e−x

1
,

which implies (2.1) holds on E = [−∞,∞]2\{(−∞,−∞)} with ν
((

[−∞, x1]× [−∞, x2]
)c)

= 1
2e
−x1

and ν concentrates on (−∞,∞] × {−∞}. Thus ν has zero second marginal and we seek HDA on
Eu. Note as n→∞,

nP

[
X1 − log n

2
≤ x1, X2 − log n

2
> x2

]
= n

[
1

2

(
1− e−(

logn
2

+x1)
)
e−3(

logn
2

+x2) +
1

2

(
e−2(

logn
2

+x2) − e−2(
logn
2

+x1)
)

1{x2<x1}

]
→ 1

2

(
e−2x

2 − e−2x1
)

1{x2<x1}

and therefore, nP [X1 − 1
2 log n > x2]→ 1

2 exp{−2x2} and consequently,

nP

[
X1 − log n

2
> x1, X2 − log n

2
> x2

]
→ 1

2
e−2(x

1∨x2).

Thus, HDA exists on Eu = [−∞,∞] × (−∞,∞] with limit measure νu, where νu([−∞, x1] ×
(x2,∞]) = 1

2

(
e−2x

2 − e−2x1
)

1{x2<x1} and νu((x1,∞]× (x2,∞]) = 1
2e
−2(x1∨x2) for x ∈ Eu. In fact,

νu concentrates on the line {(x, x) : x ∈ (−∞,∞)}.
Since νu((x1,∞]× (x2,∞]) > 0 for x ∈ Eu, we do not seek HDA on E0.

3.4. Estimation methods. To estimate joint tail probabilities, we require an estimate of the limit
measure νu given in Definition 3.1 and possibly ν0 given in Definition 3.3. Estimation of ν0 follows
the same steps as in Section 2.3 so we concentrate on estimating νu. Let, {X,Xi, i = 1, 2, · · · , n}
be iid where the distribution of X satisfies (3.2). From (3.2) we get [23, page 139] in M+(Eu)

1

k

n∑
i=1

ε(X1
i
−f(n/k)

e(n/k)
,
X2

i
−f(n/k)

e(n/k)

)(·)⇒ νu(·) (k →∞, n/k →∞).(3.12)

We know from (3.3) that the distribution of X2 characterizes {en} and {fn} and from the iid data
{X2

i : i = 1, 2, · · · , n}, we can construct estimators of e(n/k) and f(n/k) denoted by ê(n/k) and

f̂(n/k) [23, page 93] such that

e(n/k)

ê(n/k)

P→ 1,
f(n/k)− f̂(n/k)

e(n/k)

P→ 0.(3.13)

Since the limits in (3.13) are constants, we get joint convergence in M+(Eu)× R2,(
1

k

n∑
i=1

ε(X1
i
−f(n/k)

e(n/k)
,
X2

i
−f(n/k)

e(n/k)

), f(n/k)− f̂(n/k)

e(n/k)
,
e(n/k)

ê(n/k)

)
⇒
(
νu(·), 0, 1

)
(3.14)
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Apply the continuous mapping theorem to (3.14) using the map (ν(·), b, a) 7→ ν(a[(·) + b]) to get
in M+(Eu)

ν̂un (·) :=
1

k

n∑
i=1

ε(X1
i
−f̂(n/k)

ê(n/k)
,
X2

i
−f̂(n/k)

ê(n/k)

)(·)⇒ νu(·) (k →∞, n/k →∞).(3.15)

This estimator of νu is non-parametric and as in Section 2.3, we exploit the semi-parametric
structure of νu by estimating γu and the standardized hidden spectral measure Su. The parameter
γu is the extreme value index of the distribution of X2 so estimating this from iid data {X2

i :
i = 1, 2, · · · , n} is standard [9, page 65]. We obtain an estimator of Su(·) by modifying (2.24)
to account for the difference between E0 and Eu. Since the first step is to construct a consistent
estimator of ν̃u(·) defined in (3.7), define

R1,2
i :=

∣∣∣ {j : X2
j ≥ X1

i

} ∣∣∣ and R2,2
i :=

∣∣∣ {j : X2
j ≥ X2

i

} ∣∣∣, (i = 1, 2, · · · , n, )(3.16)

where | · | denotes size of a set. Observe R2,2
i is just the anti-rank of X2

i and thus 1 ≤ R2,2
i ≤ n

for i = 1, 2, · · · , n. Also, 0 ≤ R1,2
i ≤ n for i = 1, 2, · · · , n. An estimator of ν̃u is obtained from the

convergence in M+([0,∞]× (0,∞]):

̂̃νun (·) :=
1

k

n∑
i=1

ε(k/R1,2
i , k/R2,2

i )(·)⇒ ν̃u(·) (k →∞, n/k →∞).(3.17)

The verification of (3.17) follows the steps used in the proof of Proposition 2.9. Changing coordinate
system in (3.17) leads to an estimator of ν1 × Su(·) from the convergence in M+((0,∞]× [0,∞])

̂ν1 × Sun(·) :=
1

k

n∑
i=1

ε(k/R2,2
i ,R2,2

i /R1,2
i )(·)⇒ ν1 × Su(·) (k →∞, n/k →∞)(3.18)

and this produces an estimator of Su since in M+([0,∞]),

Ŝun (·) :=

∑n
i=1 ε(k/R2,2

i ,R2,2
i /R1,2

i ) ([1,∞]× ·)∑n
i=1 εk/R2,2

i
([1,∞])

⇒ Su(·) (k →∞, n/k →∞).(3.19)

This estimator may be modified as in (2.32) using the continuous bijection TR : [0,∞] 7→ [0, 1]
defined by TR : x 7→ x/(1 + x) to get in M+([0, 1]),

Ŝun (·) ◦ TR−1 ⇒ Su ◦ TR−1(·).(3.20)

This summarizes how to obtain consistent estimators for extreme value index γu and the stan-
dardized hidden spectral measure Su.

4. Detection of HDA

Since HDA is a generalization of HRV, it is not surprising that the detection techniques have
similarities to those used for HRV; see [19] and [23, pages 316-340]. However, we deviate from
traditional MEVT and so we proceed carefully. Instead of (1.2), we are assuming (2.1) and allowing
for the possibility that the limit measure ν has a zero marginal.

A first step to using HDA to compute joint tail probabilities is to infer where the limit measure ν
in (2.1) concentrates mass. When ν concentrates on one or more lines, we seek HDA. Traditionally
the inference about the support of ν has often been done informally with a density plot of a spectral
measure after non-parametric transformation to Pareto scale [23, pages 316-321].
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We consider an appropriate spectral measure for the task of understanding the support as follows.
Since (2.1) implies X(1) has a distribution H(1) in a maximal domain of attraction, we define

U (1)(·) = 1/(1−H(1)(·). From (2.1) we get on (0,∞]2 that

(4.1) nP
[(
U (1)(X1)/n, U (1)(X2)/n

)
∈ ·
]

v→ ν̃(·),

where ν̃(·) is a Radon measure on (0,∞]2 related to the limit measure ν(·) in (2.1) by

(4.2) ν̃((x1,∞]× (x2,∞]) = ν
((
ψ←(x1),∞

]
×
(
ψ←(x2),∞

])
(x ∈ (0,∞]2),

and ψ is defined in (2.4) as ψ(y) :=
(
ν({z ∈ E : z(1) > y})

)−1
. The measure ν̃(·) satisfies the scaling

ν̃(c·) = c−1ν̃(·), c > 0,(4.3)

and convergence in (4.1) is equivalent to

(4.4) nP

[(
U (1)

(
X(1)

)
n

,

(
U (1)(X1)

U (1)(X(1))
,
U (1)(X2)

U (1)(X(1))

))
∈ ·

]
v→ ν1 × S(·),

on (0,∞] × δℵ(1), where ν1((y,∞]) = y−1 for y > 0, δℵ(1) = {x ∈ (0,∞]2 : x(1) = 1} and S is a

probability measure on δℵ(1). The standardized spectral measure S is related to ν̃ in (4.1) by

(4.5) ν̃
({

x ∈ (0,∞]2 : x(1) ≥ r,x/x(1) ∈ Λ
})

= r−1S(Λ), r > 0, Borel set Λ ⊂ δℵ(1).

To estimate this measure S(·), we define variants of the anti-ranks

R
1,(1)
i =

∣∣{j : X
(1)
j ≥ X1

i

}∣∣ and R
2,(1)
i =

∣∣{j : X
(1)
j ≥ X2

i

}∣∣ (1 ≤ i ≤ n).(4.6)

A consistent estimator of S(·) is obtained from the convergence in M+(δℵ(1))

Ŝn :=

∑n
i=1 ε

(
k

R
1,(1)
i

∧R2,(1)
i

,

(
R
1,(1)
i

∧R2,(1)
i

R
1,(1)
i

,
R
1,(1)
i

∧R2,(1)
i

R
2,(1)
i

)) ([1,∞]× ·)

∑n
i=1 ε k

R
1,(1)
i

∧R2,(1)
i

([1,∞])
⇒ S(·),(4.7)

(k → ∞, n/k → ∞). The continuous bijection T : δℵ(1) 7→ [0, 1] given by T : x 7→ x2/(x1 + x2)

transforms (4.7) to Ŝn ◦ T−1 ⇒ S ◦ T−1(·) in M+([0, 1]). A density plot of Ŝn ◦ T−1 is easier to

analyze because [0, 1] is a nicer space than δℵ(1).
Analyzing the density plot using the points of Ŝn ◦ T−1 should yield evidence falling into the

following categories:

(i) The distribution S◦T−1 concentrates near 0, so remove {(x, y) ∈ R2 : y = −∞} and seek HDA
on Eu = [−∞,∞]× (−∞,∞] or its first quadrant analogue, depending on the distribution of
the second component of the random vector; see Remark 3.2 (3).

(ii) The distribution S ◦ T−1 concentrates near 1, so remove {(x, y) ∈ R2 : x = −∞} and seek
HDA on (−∞,∞]× [−∞,∞] or its first quadrant analogue depending on the distribution of
the first component of the random vector.

(iii) The distribution S ◦ T−1 concentrates near 0 and 1, so remove {(x, y) ∈ R2 : x = −∞} ∪
{(x, y) ∈ R2 : y = −∞} and seek HDA on E0 = (−∞,∞] × (−∞,∞] or its first quadrant
analogue, depending on the distribution of the smallest component of the random vector; see
Remark 2.2 (2).

(iv) The distribution S ◦ T−1 does not have any of the above properties; we have no evidence for
the support of ν being restricted to at most 2 lines and we do not consider HDA.
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We summarize our detection strategy and for concreteness assume S ◦ T−1 satisfies category (i):
Check whether X2 belongs to some maximal domain of attraction using a Hill or Pickands plots.
If so, conclude HDA exists on Eu. Then consider whether HDA exists also on E0 by examining
a similar kernel density plot formed by using the points of the estimator of Su ◦ (TR)−1 given in
(3.20).

5. Conclusion

We defined HDA as a generalization of HRV and showed by example that for some random
vectors, HDA exists but HRV does not. We outlined detection and estimation methods for HDA
that show what is possible and emphasize that such methods fill a gap to provide improved estimates
of probability of simultaneous exceedance by components of a risk vector. We have not implemented
the methods nor demonstrated utility by analyzing data; this is a future project.

We restricted discussion to two dimensions and as observed for HRV [19], extensions to higher
dimensions are not always straightforward and involve subtleties. In particular, in higher dimensions
there are many more ways domains of attraction could be hidden and many more subspaces to
explore for behavior that helps to estimate risk probabilities.

As with HRV [19, 20], our detection and estimation methods are exploratory and our estimators
are only provably consistent. More formal statistical theory is needed to turn exploratory methods
into confirmatory ones.
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